VLHC

CRYOGENICS & BEAM SCREEN WORKING GROUP

FEBRUARY 8-11, 1999

BEAM SCREEN

- 1.9 K system is easy. Regeneration interval >> year.
- Both 4.5 <u>and 20</u> K high field magnets require beam screen. R&D is required. LHC requires solutions for both their 4.5 & 300 K magnets. Two VLHC options exist:
 - 1. Physical absorption: a) shield is required
 - b) absorber (e.g., metal sponge) is required
 - c) regeneration 20 K, tri-monthly
 - 2. Chemical absorption: a) finite life
 - b) regeneration 600 K, annual

CRYOGENIC PARAMETERS & ISSUES

- Sensible heat vs. latent heat systems
 - e.g., Nb₃Sn magnet operating between 4.5 & 5.0 K vs. 4.5 & 5.5 K
 - . Trade off between: Short sample

Complexity

Cooling passages and cryostat sizes

. String length and / or re-cooler spacing

??? Temperature requirements for injection

RELIABILITY AND MAINTENANCE

- Integrated Design
 - You can't get there with separate working groups on magnets and cryogenics.
 - . Trade-off's required between efficiency and availability
 - . Require up front itemization of all off design modes
- . Scaling LHC is not an option; a simple magnet cryogenic system is required (LHC tunnel cryogenics has more than 1 valve per magnet average
- Vendor Issues
 - 1. We must maintain <u>core competency</u> within the government lab community
 - 2. We require smart procurements / full time resident inspectors
 - 3. We must be prepared to deal with costs and time required for vendor development
- . Capital vs. life cycle costs (5, 10, or 20 yr. ????)

REQUIRED R&D; PRIORITIZED

NON VLHC FUNDED R&D

. Screw compressor efficiency (> half of total inefficiency)

Use multi stage systems with pressure ratios of ~3 not 6 to 8

Use more efficient stages

** ** Buy and try ** **

Option: Use IHEM funding

\$\$\$\$ Has three-year pay back ???

. HTS power leads; ongoing LHC & Fermi effort (FY94 W.G.)

WILL HAPPEN ANYWAY

• Short sample vs. dT optimizations for Nb₃Sn (FY94 W.G.)

REQUIRED R&D; PRIORITIZED (cont'd.)

R&D THAT SHOULD BE FUNDED BY VLHC

- 1. Flow instabilities
 - Density wave instabilities
 - . Major issue if density is varying by factor 3 or more
 - . Can be stabilized by inlet pressure drops (costs efficiency)
 - . Numeric simulations are deeded
- 2. Beam screens
 - . Start at when LHC effort stops
- 3. Cycle and efficiencies for sensible heat vs. latent heat systems

